Search results for "quasars: emission lines"

showing 4 items of 4 documents

ELDAR, a new method to identify AGN in multi-filter surveys: the ALHAMBRA test case

2017

We present ELDAR, a new method that exploits the potential of medium- and narrow-band filter surveys to securely identify active galactic nuclei (AGN) and determine their redshifts. Our methodology improves on traditional approaches by looking for AGN emission lines expected to be identified against the continuum, thanks to the width of the filters. To assess its performance, we apply ELDAR to the data of the ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical) survey, which covered an effective area of 2.38 deg2 with 20 contiguous medium-band optical filters down to F814W ≃ 24.5. Using two different configurations of  ELDAR in which we require the detection of at lea…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusactive [Galaxies][ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Continuum (design consultancy)FOS: Physical sciencesAstrophysicsSurveys01 natural sciencestechniques: photometricemission lines [Quasars]Galaxies: distances and redshiftssurveys0103 physical sciencesdistances and redshifts [Galaxies]Emission spectrumOptical filterdata analysis [Methods]010303 astronomy & astrophysicsPhysicsANÁLISE DE DADOSNumber density010308 nuclear & particles physicsphotometric [Techniques]galaxies: active – galaxies: distances and redshiftsAstronomy and AstrophysicsFilter (signal processing)Galaxies: activeAstrophysics - Astrophysics of Galaxiesmethods: data analysisGalaxyRedshiftquasars: emission linesSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

The ALHAMBRA survey: Discovery of a faint QSO at z = 5.41

2013

[Aims]: We aim to illustrate the potentiality of the Advanced Large, Homogeneous Area, Medium-Band Redshift Astronomical (ALHAMBRA) survey to investigate the high-redshift universe through the detection of quasi stellar objects (QSOs) at redshifts higher than 5. [Methods]: We searched for QSOs candidates at high redshift by fitting an extensive library of spectral energy distributions-including active and non-active galaxy templates, as well as stars-to the photometric database of the ALHAMBRA survey (composed of 20 optical medium-band plus the 3 broad-band JHKs near-infrared filters). [Results]: Our selection over ≈1 square degree of ALHAMBRA data (∼1/4 of the total area covered by the sur…

QSOSAbsolute magnitudeCosmology and Nongalactic Astrophysics (astro-ph.CO)active [Galaxies]Young stellar objectContinuum (design consultancy)FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLuminosityhigh-redshift [Galaxies]emission lines [Quasars]Galaxies: distances and redshiftsdistances and redshifts [Galaxies]Astrophysics::Galaxy AstrophysicsPhysicsQuasars: emission linesGalaxies: high-redshiftGalaxies: evolutiongeneral [Quasars]Astronomy and AstrophysicsGalaxies: activeevolution [Galaxies]RedshiftGalaxyQuasars: generalBlack holeSpace and Planetary ScienceAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Recurrence of the blue wing enhancements in the high ionization lines of SDSS 1004+4112 A

2006

We present integral field spectroscopic observations of the quadruple-lensed QSO SDSS 1004+4112 taken with the fiber system INTEGRAL at the William Herschel Telescope on 2004 January 19. In 2003 May, a blueward enhancement in the high-ionization lines of SDSS 1004+4112A was detected, and then it faded. Our observations are the first to note a second event of similar characteristics less than 1 year after. Although initially attributed to microlensing, the resemblance among the spectra of both events and the absence of microlensing-induced changes in the continuum of component A are puzzling. The lack of a convincing explanation under the microlensing or intrinsic variability hypotheses make…

PhysicsQuasars: emission linesAstrophysics (astro-ph)Gravitational lensingFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGravitational microlensingAstrophysicsSpectral lineemission lines [Quasars]Space and Planetary Scienceindividual (SDSS 1004-4112) [Quasars]IonizationQuasars: individual (SDSS 1004-4112)William Herschel Telescope
researchProduct

SHARDS: A global view of the star formation activity at z~0.84 and z~1.23

2015

et al.

Galaxies: generalAstrofísicaStellar massFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstar formation [Galaxies]Luminosityhigh-redshift [Galaxies]emission lines [Quasars]Stellar evolutionAstrophysics::Galaxy AstrophysicsCosmic dustPhysicsQuasars: emission linesGalaxies: star formationStar formationphotometry [Galaxies]Galaxies: high-redshiftGalaxies: evolutiongeneral [Galaxies]Astronomy and AstrophysicsQuasarGalaxies: photometryevolution [Galaxies]Astrophysics - Astrophysics of GalaxiesRedshiftGalaxyAstronomíaSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)
researchProduct